Skeleton Pirate

Skeleton Pirate
Artist: LindaB

WELCOME TO STRONTIUM FOR BONES BLOG

Have you experienced, or read about, negative, and even dangerous, side effects from Fosamax (alendronate), Boniva (ibandronate), Actonel (risedronate), and other bisphosphonates prescribed for osteoporosis? If you have, then rest assured there is a safe, effective treatment for this condition. Strontium, primarily in the form of strontium citrate, is taken orally once a day.

Visitors to my blog can leave comments or ask questions and can remain anonymous, if they wish. Their comments are relayed to my g-mail inbox. Below each post, the number of comments for that post is cited and underlined because it is a link. By clicking on that link below any post, a window opens so that a visitor can leave a comment. Ideally, visitors leave comments on posts most relevant to their comments. All comments to my posts are moderated by me.

Browse the posts and visit the link library of references.

Visit me at www.twitter.com






Blog Archive

Thursday, March 12, 2015

Strontium Prevents the Progression of Thoracic Kyphosis



Background: Thoracic kyphosis (a frequent feature in the elderly and in post menopausal osteoporosis) can be caused by vertebral fractures. This exaggerated curvature of the spine is also related to degenerative changes including intervertebral disc space narrowing, deformities of the anterior part of the vertebrae and reduced spinal muscles strength. An increase over time in thoracic kyphosis has been associated with impairment in global health due to increased body sway and risk of falls, impairments in pulmonary function, presence of esophagial hiatal hernia, and an increase in risk of mortality in older women.

Objectives: The objective of this study was to assess the effect on thoracic kyphosis progression over a 3-year treatment with strontium ranelate, a treatment against osteoporosis that reduces the risk of vertebral, nonvertebral and hip fractures.

Methods: This study was performed in women with postmenopausal osteoporosis from SOTI 1 and TROPOS 2 studies, aiming to demonstrate the efficacy of strontium ranelate against vertebral and non-vertebral fractures. Patients underwent lateral radiographs of the thoracic and lumbar spine at baseline and annually over 3 years (standardized procedures). The level of thoracic kyphosis was reflected by a kyphosis index, defined on lateral thoracic radiographs as the ratio BD/AC (AC= line from the anterior superior edge of T4 to the anterior inferior edge of T12; BD= perpendicular line from the furthest superior or inferior posterior point of T7, T8 or T9 vertebrae to AC line) expressed as a %. The highest the KI, the more severe the thoracic kyphotic curvature.

Results: The population consisted of 4055 women with postmenopausal osteoporosis (2038 patients randomised to strontium ranelate and 2017 randomised to placebo). Baseline characteristics were similar: mean age 73.5; Spine BMD T-score (L2-L4): -3.06; Femoral neck T-score: -2.97; KI: 25.4. Over 3 years, there was a significant increase from baseline in kyphotic index for all patients. However, this increase was significantly lower (p=0.003) in patients treated with strontium ranelate: +3.71±7.69% than in the placebo group:+4.70±7.32%.
The same calculations were repeated after exclusion of patients having either prevalent or incident thoracic vertebral fractures. In this subset of 1193 patients (634 in the strontium ranelate group and 559 in the placebo group), the change in the strontium ranelate group was still lower than in the placebo group (+ 2.72±7.17% versus 4.34±6.54%, respectively).



Conclusion: These prospective results demonstrate that thoracic kyphosis increases over time in postmenopausal women with osteoporosis. Strontium ranelate decreased the progression of this thoracic kyphosis over 3 years, regardless of the presence or not of vertebral fractures. This new effect of strontium ranelate possibly reflects additional benefit on spinal components besides its efficacy in decreasing vertebral fractures.

References: 1 Meunier PJ et al. N Engl J Med 2004; 2 Reginster J.Y et al. JCEM 2005

Ann Rheum Dis 2008;67(Suppl II):541
http://www.abstracts2view.com/eular/view.php?nu=EULAR08L_SAT0344

No comments:

Wandering Skeleton

Wandering Skeleton
Artist: Joel Hoekstra

Osteoporotic Bone

Osteoporotic Bone
Source: www.mayoclinic.com

How Strontium Builds Bones

Strontium is a mineral that tends to accumulate in bone. Studies have shown that oral doses of strontium are a safe and effective way to prevent and reverse osteoporosis. Doses of 680 mg per day appear to be optimal. See my "For More Information About Strontium" links section.

Osteoporosis is caused by changes in bone production. In healthy young bones there is a constant cycle of new bone growth and bone removal. With age, more bone is removed and less new bone is produced. The bones become less dense and thus more fragile.

Scientists believe that strontium works in two ways. It may stimulate the replication of pre-osteoblasts, leading to an increase in osteoblasts (cells that build bone). Strontium also directly inhibits the activity of osteoclasts (cells that break down bone). The result is stronger bones.

When taking strontium, be sure to take 1200 mg calcium, 1000 IU vitamin D3, and 500 mg magnesium daily. It is best to take strontium late at night on an empty stomach. Calcium and strontium may compete with each other for absorption if taken together.